225 research outputs found

    Approaches for advancing scientific understanding of macrosystems

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H., Tarnas, J. D., Mustard, J. F., Zhang, X., Wei, Y., Wan, W., Klein, F., & Kellner, J. R. Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data. Icarus, 355, (2021): 114168, https://doi.org/10.1016/j.icarus.2020.114168.Serpentine and carbonate are products of serpentinization and carbonation processes on Earth, Mars, and other celestial bodies. Their presence implies that localized habitable environments may have existed on ancient Mars. Factor Analysis and Target Transformation (FATT) techniques have been applied to hyperspectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to identify possible serpentine and Mg-carbonate-bearing outcrops. FATT techniques are capable of suggesting the presence of individual spectral signals in complex spectral mixtures. Applications of FATT techniques to CRISM data thus far only evaluate whether an entire analyzed image (≈ 3 × 105 pixels) may contain spectral information consistent with a specific mineral of interest. The spatial distribution of spectral signal from the possible mineral is not determined, making it difficult to validate a reported detection and also to understand the geologic context of any purported detections. We developed a method called Dynamic Aperture Factor Analysis/Target Transformation (DAFA/TT) to highlight the locations in a CRISM observation (or any similar laboratory or remotely acquired data set) most likely to contain spectra of specific minerals of interest. DAFA/TT determines the locations of possible target mineral spectral signals within hyperspectral images by performing FATT in small moving windows with different geometries, and only accepting pixels with positive detections in all cluster geometries as possible detections. DAFA/TT was applied to a hyperspectral image of a serpentinite from Oman for validation testing in a simplified laboratory setting. The mineral distribution determined by DAFA/TT application to the laboratory hyperspectral image was consistent with Raman analysis of the serpentinite sample. DAFA/TT also successfully mapped the spatial distribution of Mg-serpentine and Mg-carbonate previously detected in CRISM data using band parameter mapping and extraction of ratioed spectra. We applied DAFA/TT to CRISM images in some olivine-rich regions of Mars to characterize the spatial distribution of Mg-serpentine and Mg-carbonate-bearing outcrops.This work was supported by the National Natural Science Foundation of China (grant no. 41671360, 41525016, 41902318). JFM and JDT acknowledge NASA support through a subcontract from the Applied Physics Lab for CRISM investigations. H. Lin also acknowledges the support from the key research Program of the Institute of Geology and Geophysics, CAS (IGGCAS-201905). The Headwall imaging spectrometer was acquired using funds to JRK from The Institute at Brown for Environment and Society and Brown University. The DAFA/TT codes are available on GitHub (https://github.com/linhoml?tab=repositories)

    Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California

    Get PDF
    Estimates of the magnitude and distribution of aboveground carbon in Earth's forests remain uncertain, yet knowledge of forest carbon content at a global scale is critical for forest management in support of climate mitigation. In light of this knowledge gap, several upcoming spaceborne missions aim to map forest aboveground biomass, and many new biomass products are expected from these datasets. As these new missions host different technologies, each with relative strengths and weaknesses for biomass retrieval, as well as different spatial resolutions, consistently comparing or combining biomass estimates from these new datasets will be challenging. This paper presents a demonstration of an inter-comparison of biomass estimates from simulations of three NASA missions (GEDI, ICESat-2 and NISAR) over Sonoma county in California, USA. We use a high resolution, locally calibrated airborne lidar map as our reference dataset, and emphasize the importance of considering uncertainties in both reference maps and spaceborne estimates when conducting biomass product validation. GEDI and ICESat-2 were simulated from airborne lidar point clouds, while UAVSAR's L-band backscatter was used as a proxy for NISAR. To estimate biomass for the lidar missions we used GEDI's footprint-level biomass algorithms, and also adapted these for application to ICESat-2. For UAVSAR, we developed a locally trained biomass model, calibrated against the ALS reference map. Each mission simulation was evaluated in comparison to the local reference map at its native product resolution (25 m, 100 m transect, and 1 ha) yielding RMSEs of 57%, 75%, and 89% for GEDI, NISAR, and ICESat-2 respectively. RMSE values increased for GEDI's power beam during simulated daytime conditions (64%), coverage beam during nighttime conditions (72%), and coverage beam daytime conditions (87%). We also test the application of GEDI's biomass modeling framework for estimation of biomass from ICESat-2, and find that ICESat-2 yields reasonable biomass estimates, particularly in relatively short, open canopies. Results suggest that while all three missions will produce datasets useful for biomass mapping, tall, dense canopies such as those found in Sonoma County present the greatest challenges for all three missions, while steep slopes also prove challenging for single-date SAR-based biomass retrievals. Our methods provide guidance for the inter-comparison and validation of spaceborne biomass estimates through the use of airborne lidar reference maps, and could be repeated with on-orbit estimates in any area with high quality field plot and ALS data. These methods allow for regional interpretations and filtering of multi-mission biomass estimates toward improved wall-to-wall biomass maps through data fusion.</p

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    Statistical properties of hybrid estimators proposed for GEDI – NASA’s Global Ecosystem Dynamics Investigation

    Get PDF
    NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission will collect waveform lidar data at a dense sample of ∼25 m footprints along ground tracks paralleling the orbit of the International Space Station (ISS). GEDI’s primary science deliverable will be a 1 km grid of estimated mean aboveground biomass density (Mg ha ^−1 ), covering the latitudes overflown by ISS (51.6 °S to 51.6 °N). One option for using the sample of waveforms contained within an individual grid cell to produce an estimate for that cell is hybrid inference, which explicitly incorporates both sampling design and model parameter covariance into estimates of variance around the population mean. We explored statistical properties of hybrid estimators applied in the context of GEDI, using simulations calibrated with lidar and field data from six diverse sites across the United States. We found hybrid estimators of mean biomass to be unbiased and the corresponding estimators of variance appeared to be asymptotically unbiased, with under-estimation of variance by approximately 20% when data from only two clusters (footprint tracks) were available. In our study areas, sampling error contributed more to overall estimates of variance than variability due to the model, and it was the design-based component of the variance that was the source of the variance estimator bias at small sample sizes. These results highlight the importance of maximizing GEDI’s sample size in making precise biomass estimates. Given a set of assumptions discussed here, hybrid inference provides a viable framework for estimating biomass at the scale of a 1 km grid cell while formally accounting for both variability due to the model and sampling error

    GEDI launches a new era of biomass inference from space

    Get PDF
    Accurate estimation of aboveground forest biomass stocks is required to assess the impacts of land use changes such as deforestation and subsequent regrowth on concentrations of atmospheric CO2. The Global Ecosystem Dynamics Investigation (GEDI) is a lidar mission launched by NASA to the International Space Station in 2018. GEDI was specifically designed to retrieve vegetation structure within a novel, theoretical sampling design that explicitly quantifies biomass and its uncertainty across a variety of spatial scales. In this paper we provide the estimates of pan-tropical and temperate biomass derived from two years of GEDI observations. We present estimates of mean biomass densities at 1 km resolution, as well as estimates aggregated to the national level for every country GEDI observes, and at the sub-national level for the United States. For all estimates we provide the standard error of the mean biomass. These data serve as a baseline for current biomass stocks and their future changes, and the mission's integrated use of formal statistical inference points the way towards the possibility of a new generation of powerful monitoring tools from space

    Approaches to advance scientific understanding of macrosystems ecology

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological pat- terns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require valida- tion, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

    Get PDF
    Remote sensing methods enable detection of solar-induced chlorophyll a fluorescence. However, to unleash the full potential of this signal, intensive cross-disciplinary work is required to harmonize biophysical and ecophysiological studies. For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.Peer reviewe
    • …
    corecore